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Using molecular dynamics we study heat conduction and diffusion of hard disks in one-dimensional narrow
channels. When collisions preserve momentum the heat conduction � diverges with the number of disks N as
��N� ���1/3�. Such a behavior is seen both when the ordering of disks is fixed �“pen-case” model�, and
when they can exchange their positions. Momentum conservation results also in sound-wave effects that
enhance diffusive behavior and on an intermediate time scale �that diverges in the thermodynamic limit�
normal diffusion takes place even in the “pen-case” model. When collisions do not preserve momentum, �
remains finite and sound-wave effects are absent.
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According to the Fourier’s law of heat conductivity, when
a small temperature difference is applied across a system, in
the steady state the heat flux j satisfies the equation

j = − � � T , �1�

where T is a local temperature and � is the heat conductivity
of a given material. Since the heat conductivity � is one of
the most important transport coefficients a lot of effort has
been devoted to its calculation. Of particular interest is the
case of low-dimensional systems, where � might diverge and
thus Eq. �1� would break down �1�. However, despite inten-
sive efforts the nature of this divergence is not yet fully
understood even in one-dimensional systems. Renormaliza-
tion group calculations �2� show that for one-dimensional
fluidlike systems � should diverge with the number of par-
ticles N as ��N� with �=1/3. Although earlier works sug-
gested other values of �, recent simulations for hard-core
particle systems agree with this prediction �3�. In the other
class of systems, chains of nonlinear oscillators �Fermi-
Pasta-Ulam systems�, simulations suggest �1,4� a larger
value of � �0.37–0.40� and that might be consistent with the
predictions of mode-coupling theory �=2/5 �5,6�. However,
recently it was suggested that for such chains of oscillators �
also should be equal to 1/3 and numerically observed values
of � were attributed to numerical difficulties �7�.

It would be desirable to relate the divergence of heat con-
ductivity to other dynamic properties of a given system. For
example, it has been shown that chaoticity plays an impor-
tant role and ensures that � remains finite �8�. On the other
hand, conservation of momentum is known to imply the di-
vergence of � �2,4�. Some attempts were also made to relate
heat conductivity and diffusion. In particular, Li and Wang
suggested �9� that the exponent � describing the mean square
displacement of diffusing particles

�x2�t�� � t� �2�

should be related with � through the equation

� = 2 − 2/� . �3�

Such an equation implies that the normal diffusion ��=1�
leads to the normal �nondivergent� heat conductivity ��=0�.

Moreover, superdiffusion ���1� and subdiffusion ���1�
correspond to divergent ���0� and vanishing ���0� heat
conductivity, respectively �10�. Although some numerical ex-
amples �11� seem to confirm the relation �3�, its derivation is
based only on qualitative arguments that neglect, for ex-
ample, interactions between particles and so the suggestions
that the relation �3� is of more general validity should be
taken with care �12�. In another attempt, studying a class of
noninteracting billiard heat channels, Denisov et al. �13� ob-
tained a different relation between the exponents � and �,
namely

� = � − 1. �4�

The relation �4� was verified numerically for the energy dif-
fusion in a one-dimensional hard-core model �14�. However,
it was argued �14� that the Levy walk scenario, that the en-
ergy diffusion obeys in this model, might be due to the ab-
sence of exponential instability and it is not clear whether
this result can be extended to more realistic systems.

Establishing a firm relation between heat conductivity and
diffusion could be possibly very influential and shed some
light also on other transport phenomena. In the present paper
we examine a model of hard disks in a narrow channel.
When a fraction of disks is immobile and thus collisions do
not conserve momentum, the heat conductivity � remains
finite and normal diffusion takes place. Simulations show
that when there are no immobile disks and momentum is
conserved, heat conductivity diverges with � close to 1/3.
According to �3� or �4� it should imply a superdiffusion.
Although in this case diffusion is enhanced by sound-wave
effects, there are no indications of superdiffusivity. Our work
suggests that in hard-disk systems in a narrow channel heat
conductivity and diffusion might be related but in a more
intricate way than relations �3� or �4� would suggest.

In our model N identical hard disks of radius r and unit
mass are moving in a channel of size Lx and Ly �see Fig. 1�.
The channel is narrow �Lx�Ly� and at both of its ends there
are thermal walls that are kept at temperatures T1 and T2
�15�. After the collision with the wall kept at temperature T a
disk has its normal component sampled from the distribution

p�vx�=
��±vx�vx

T exp�− vx
2

2T
� with the sign in the argument of the
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Heaviside function depending on the location of the wall. Its
parallel component is sampled from the Gaussian distribu-

tion p�vy�= 1
	2	T

exp�− vy
2

2T
�. In the vertical y-direction periodic

boundary conditions are used. To calculate the heat conduc-
tivity � we use Eq. �1� with heat flux in the x direction
defined as a time average of j=
ivxi

3 /2 where vxi is the x
component of the velocity of the ith particle.

One can note that without heat reservoirs models of this
kind are chaotic �16,17�. Such a feature makes this model
more realistic than, for example, a frequently examined one-
dimensional alternating mass hard-disk model �3,18�. In the
simplest setup of our model, known as a “pen-case” model
�16,17� �Fig. 1�a�� disks are so large that they cannot ex-
change their position �Ly /2�r�Ly /4�. Heat conduction was
already studied in such a case by Deutsch and Narayan �19�.
Although their calculations indicate that � is close to 1/3,
reported strong finite size effects and relatively small size of
examined systems �N
2048� suggest that one must be cau-
tious in the interpretation of these results. When r and Ly
become small and the surface of particles is considered as
very rough the “pen-case” model becomes the random-
collision model. Calculations in such a case also suggest that
� is close to 1/3 �19�.

An efficient way to simulate hard-disk systems is to use
event-driven molecular dynamics �20–22�. Performance of
the algorithm considerably increases upon implementing
heap searching and sectorization and such methods have al-
ready been applied to a number of problems �23,24�. In our
model it is sufficient to use sectorization only in the x direc-
tion. With such a technique we examined systems of up to
N=3�104 hard disks. In the “pen-case” version of the
model there is no need to introduce sectorization and simu-
lations are only a little bit more demanding than in a one-
dimensional alternating mass model �3�.

To allow an exchange of particles we simulated also sys-
tems with disks of a smaller radius �Fig. 1�b�� and in such a
case the sectorization considerably speeds up simulations. To
examine the role of momentum conservation a fraction c of
disks are made immobile. These disks are of the same radius
and collisions with them conserve energy but not momen-
tum. They are placed along the line y=Ly /2 �Fig. 1�c�� but
similar �not presented� results are obtained for the random

distribution of immobile disks. In our simulations, the pa-
rameters were chosen as follows: Lx=N, Ly =1.0–1.5, r
=0.01–0.3, T1=1, T2=2, and c=0–0.1. Initially centers of
disks are usually uniformly distributed along the line y
=Ly /2 �for c�0 they are between immobile disks�. Their
velocities are sampled from the Boltzmann distribution at
temperature interpolating linearly between T1 at x=0 and T2
at x=L �25�. Such a system evolves until a stationary state is
reached and then computations of some time averages are
made.

Numerical simulations in the momentum conserving case
show that � diverges with the number of particles N �Fig. 2
and the exponent � is close to that expected for the one-
dimensional systems value 1/3. In the limit of ideal gas �r
→0� heat flux is independent on N �note that Lx=N and
increasing the number of particles N we also increase the
distance they had to travel�. This explains the slower conver-
gence seen for r=0.1.

The divergence of � is an expected feature of momentum
conserving systems �2,4�, and some arguments suggest that
in systems where momentum is not conserved � should be
finite �2�. A simple way to introduce momentum nonconser-
vation into our system is to place some immobile disks. Al-
though we do not present numerical data, our simulations
confirm that in such a case � remains finite in the thermody-
namic limit N→�. We noticed that even a small fraction of
immobile disks �c=0.01� is sufficient to remove the diver-
gence of �. It means that the behavior of � in a very sensitive
way depends on the conservation of momentum.

Simulations show that when there are no immobile disks,
� diverges with the same exponent ���1/3� both when par-
ticles cannot exchange their positions �case �a� in Fig. 1� and
when they can �case �b��. If Eq. �3� or Eq. �4� holds, we
should observe in both cases the superdiffusive behavior �al-
beit with different exponents ��. To examine diffusive prop-
erties we measured the mean square displacement �x2�t��
over disks that at a certain time enter the central part of the
system and did not hit a wall before the time t �for the ex-

T1 T2(a) Ly
Lx

(b)

(c)

FIG. 1. In our model disks move between thermal walls kept at
different temperatures T1 and T2. In the vertical direction periodic
boundary conditions are used. In �a� particles cannot pass each
other and in �b� such a movement is possible. In �c� a fraction of
disks is immobile and placed in the middle of the system �filled
circles�.
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FIG. 2. The size dependence of the heat conductivity � for the
momentum conserving cases �a� and �b�. The solid line has a slope
corresponding to �=1/3. For r=0.3 our results for L=1.0 and 1.5
are nearly identical.
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amined time scale such processes were extremely rare� �26�.
To measure �x2�t�� the system is not subjected to the tem-
perature difference �T1=T2=T�.

Numerical results show �Fig. 3� that in the presence of
immobile disks �x2�t�� increases linearly in time ��=1� and
since � remains finite in this case ��=0�, both �3� and �4� are
satisfied. When momentum is conserved, two different be-
haviors are observed. In the case �a� disks cannot exchange
their positions and displacement of particles is severely re-
stricted. As a result �x2�t�� saturates and that is an indication
of strong subdiffusion. We will see, however, that this is only
a finite size effect and in the thermodynamic limit a different
behavior emerges in this case. In the case �b� disks can ex-
change their positions and asymptotically �x2�t�� increases
linearly in time, as in the momentum nonconserving case.

Now, let us examine an interesting similarity in the be-
havior of �x2�t�� in the cases �a� and �b�. Namely, initially
�x2�t�� has some oscillatory behavior in these cases and there
is no indication of such a behavior in the momentum non-
conserving case. To examine the origin of these oscillations
we simulated systems of different number of disks and at
different temperatures. Simulations show that the time of the
first maximum of �x2�t�� is approximately proportional to N
�and thus to Lx� and inversely proportional to 	T �note that
	T is proportional to the typical velocity of disks�. Such a
behavior indicates that quasioscillations of �x2�t�� are related
with sound-wave effects. Size dependence of these qua-
sioscillations for the case �a� is shown in Fig. 4 and a similar
behavior was found for the case �b�. Let us also notice that in
case �b� the short-time growth of �x2�t�� is faster than the
long-time growth, although in both cases the growth is linear.
Moreover, the saturation value of 	�x2�t�� is much smaller
than the system length Lx.

Although at the large time scale the behavior of �x2�t�� in
cases �a� and �b� is much different �Fig. 3�, at the shorter
time scale it shows some similarity. Heat conductivity in
cases �a� and �b� also behaves similarly. It is thus tempting to
suggest that sound-wave effects, that provide a relatively fast
transfer of energy but only on a short time scale, are related
both with divergence of � and with quasioscillations of

�x2�t��. In the presence of immobile disks such effects disap-
pear, apparently due to the dissipation of momentum during
collisions with immobile disks. As a result � remains finite
and �x2�t�� increases monotonously in time. However, more
detailed studies would be needed to substantiate such a
claim.

Let us also notice that the time scale set by sound-wave
effects diverges in the limit N→�. In that case such effects
will dominate diffusive behavior for an arbitrarily long time.
As seen in Fig. 4, in such a limit �x2�t�� seems to develop
longer and longer linear increase. Thus we expect that in the
limit N→�, the diffusion in both cases �a� and �b� �data not
shown� is normal, contrary to the predictions of �3� or �4�.

That in the case �a� the mean square displacement �x2�t��
increases linearly in time is perhaps interesting on its own. In
this case particles cannot exchange their positions and that
resembles the molecular diffusion, e.g., in some zeolites
�27�. For such, so-called single-file systems, the mean square
displacement is known to increase as 	t and such a slow
increase was derived for some stochastic lattice gas models
�28�. As shown in Fig. 4, continuous dynamics and/or mo-
mentum conservation considerably modify such a behavior.
However, since the thermal motion is usually rather fast, the
sound-wave time scale is quite short and it might be difficult
to examine such effects experimentally.

In conclusion, our work shows that in momentum-
conserving hard disk systems in narrow channels heat con-
ductivity � diverges with the exponent ��1/3 and sound-
wave effects enhance diffusion. As a result, in the
thermodynamic limit, normal diffusion appears even in the
“pen-case” version of our model. When momentum is not
conserved, � remains finite and no enhancement of diffusion
was observed. Heat conduction, diffusion, and momentum
conservation are terms of fundamental importance in phys-
ics. Their intricate relations even in such simple systems like
the ones examined in the present paper should warrant fur-
ther study of these problems.

The authors gratefully acknowledge access to the comput-
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Center.
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FIG. 3. The time dependence of the mean square displacement
�x2�t�� for N=1000 and T1=T2=1.
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FIG. 4. �Color online� The time dependence of the mean square
displacement �x2�t�� for momentum conserving case �a� with differ-
ent values of N and T1=T2=1.0.
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